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1. PURPOSE AND SCOPE 
This document describes the theoretical basis of the synergetic ice cloud retrieval algorithm that combines 

the CloudSat radar, the CALIPSO lidar and MODIS measurements: “DARDAR-cloud” and “DARDAR-rad-

cloud”, more details can be found in Delanoë and Hogan 2008 and 2010.  

The DARDAR-cloud products are routinely processed by the ICARE Data Center ( http://www.icare.univ-

lille1.fr ). A website where is described the product format and content, the version changes and more is 

maintained at http://www.icare.univ-lille1.fr/projects/dardar/dardar_cloud . 

2. OVERVIEW 

2.1 Algorithm Name 
This algorithm is referred to as Varcloud: it uses CloudSat, CALIPSO and MODIS measurements to retrieve 

the properties of ice clouds within a variational framework. It was developed at the University of Reading 

by Julien Delanoë and Robin Hogan.  

2.2 Name of L2 data Product(s) Generated 
The algorithm can generate two products: 

 DARDAR-cloud : Ice cloud properties derived from CloudSat and CALIPSO (CALIOP) only. 

 DARDAR-rad-cloud: Ice cloud properties derived from CloudSat and CALIPSO (CALIOP) and IR radiances 

from IIR or MODIS. This product is not routinely available yet. 

The variables contained in these products are listed in Table 1 and Table 2 ; note that the format of the two 

products is the same. 

2.3 Description of the L2 data product(s) 
The variables contained in the two products are described in detail in Table 1 and Table 2. 

Table 1: Description of the L2 data product(s): Attributes 

Attributes 

Name Type Value 

title 8-bit 

signed 

char 

Optimal estimation ice cloud retrieval method 

institution 8-bit 

signed 

char 

University of Reading, UK: http://www.met.reading.ac.uk 

Data 

Production 

8-bit 

signed 

University of Reading, UK: http://www.met.reading.ac.uk 

http://www.icare.univ-lille1.fr/
http://www.icare.univ-lille1.fr/
http://www.icare.univ-lille1.fr/projects/dardar/dardar_cloud


Centre char 

history 8-bit 

signed 

char 

Mon Apr 26 12:10:22 2010 - Generated by variational algorithm by sws05jmd on pilvista 

This Retrieval has been derived from : [Radar reflectivity]  [Lidar]   

Formalism: N0*  and N0prime=N0/alpha^coeff 

Lookup table: 

/home/sws05jmd/Work/OE/dardar_cloud/LUT/ice_properties_TMatrix_axial_ratio_0_

6_BF95_modified_-1_3_cloudsat.cfg 

Input file: /export/pilvista/raid1/sws05jmd/DARDAR/2006/2006_07_14/DARDAR-

MASK_v1.1.2_2006195074445_01121.hdf 

Check configuration parameters :  

Configuration for Extinction to backscatter ratio: constant (0), linear vert (1), basis 

functions (2) :6 

N spacing factor :4 

Extinction to backscatter ratio spacing factor :4 

ln(Extinction to b ackscatter ratio), first guess :3.50 

Radius A, first guess :1e-05 

ln(Extinction), first guess :-9.00 

ln(Extinction to backscatter ratio), apriori :3.50  

Smoothscale :1.00 

Use molecular signal beyond the cloud (1) otherwise (0) :1 

No lidar exploited beyond liquid ...(1) otherwise (0) :1 

Diagonal value in a priori errcov :1.00 

Ext_bscat_ratio_ice_apriori error 1 :0.10 

Ext_bscat_ratio_ice_apriori error 2 :0.00 

A priori decorrelation distance :10.00 

Z error value in dBZ (forward model):1.00 

Beta error value in ln (forward model):0. 30 

IR  MODIS AQUA(1),IIR(2),SEVERI MSG(3),EARTHCARE MSI(4) :1 

Error covariance used, yes (1)  no (0) :1 

Number of molecular gates used beyond the cloud:5 

Nprime a priori as function of Temperature [deg C] (default_logNprime = 



ln(N0*/extinction^coeff) = A +B*T 

A for Nprime:22.234435 

B for Nprime:-0.0907 

Nprime coefficient:0.610000 

HSRL used ...(1) otherwise (0) :0 

IR Wavelength assimilated (micron):11.03 

dI=I1-I2  IR (1) Wavelength assimilated for radiance difference (micron):11.03 

IR (2) Wavelength assimilated for radiance difference (micron):12.02 

Input Files 8-bit 

signed 

char 

 /export/pilvista/raid1/sws05jmd/DARDAR/20 06/2006_07_14/DARDAR-

MASK_v1.1.2_2006195074445_01121.hdf 

Version 8-bit 

signed 

char 

1.2.1 

Product 

Name 

8-bit 

signed 

char 

DARDAR_CLOUD 

Product 

Description 

8-bit 

signed 

char 

Varcloud - Optimal estimation ice cloud retrieval method 

Institution 8-bit 

signed 

char 

University of Reading, UK: http://www.met.reading.ac.uk 

Data 

Processing 

Centre 

8-bit 

signed 

char 

ICARE-CGTD, University of Lille, FR : http://www.icare.univ-lille1.fr 

Geographic 

Projection 

8-bit 

signed 

char 

LIDAR Subtrack 

Pixel Size 8-bit 

signed 

char 

1km 

Vertical Bin 

Size 

8-bit 

signed 

60m 



char 

Production 

Time 

8-bit 

signed 

char 

2010-04-26T12:10:22 

Date 8-bit 

signed 

char 

2006195074445_01121 

 

Table 2: Description of the L2 data product(s): variables 

 Variables  

Name type description Dimen

sion 

Range Missing 

value 

Fill 

value 

Units 

time Float 

32 

Time UTC time 

(numb

er of 

profile

s) 

 -999. -999. s 

latitude Float 

32 

Latitude of co-located 

CloudSat-CALIPSO footprints at 

the ground 

time [-90 90] -999. -999. degree 

longitude Float 

32 

Longitude of co-located 

CloudSat-CALIPSO footprints at 

the ground 

time [-180 

180] 

-999. -999. degree 

vis_optical_depth Float 

32 

Visible optical depth, defined 

as the (dimensionless) line 

integral of the ice cloud visible 

extinction along a vertical path 

through the entire 

atmosphere. 

time [0 500] -999. -999. none 

vis_optical_depth

_error 

Float 

32 

Visible optical depth error time [0 500] -999. -999. none 

height Float 

32 

Height above mean sea level, 

describes the altitude of each 

radar and lidar (CloudSat-

CALIPSO ) common range 

gates 

height 

(436) 

 -999. -999. m 



n_iterations Int 16 Number of iterations before 

convergence 

time 

x20 

[1 20] -999. -999. none 

wavelength Float 

32 

Wavelength of the centre of 

radiance channel (infrared) 

time 

x3 

[8e-6 

14e-6] 

-999. -999. m 

chi2 Float 

32 

Value of chi squared for each 

iteration; to determine if the 

algorithm as converged we use 

a chi squared convergence 

test. 

time 

x20 

[0 1e6] 1e6 1e6 none 

chi2_split Float 

32 

Value of chi squared at the 

final iteration for each 

measurement type, 

normalized by the number of 

gates; the chi2_split dimension 

indicates the instrument (lidar 

, Z, radiance, dradiance) 

time 

x6 

[0 1e6] 1e6 1e6 none 

radiance Float 

32 

Forward-modelled radiance. 

For each infrared radiometer 

channel, the radiance forward 

model takes as input the 

relevant cloud variables from 

the state vector (profiles of 

visible extinction coefficient v 

and N0*) and estimates of 

other variables (profiles of 

temperature, pressure, 

humidity, O3 and CO2 

concentrations, as well as skin 

temperature and emissivity). 

In the case of the DARDAR-

cloud product, this calculation 

is performed on the radar-lidar 

retrieved profile, while for the 

DARDAR-rad-cloud product, it 

is used as part of the retrieval 

and is calculated at every 

iteration of the algorithm 

(although only the value at the 

final iteration is reported). 

time 

x3 

[0 15] -999. -999. W m-2 

um-1 

sr-1 

radiance_sat Float 

32 

Radiance from the satellite 

(channels in wavelength 

variable) 

time 

x3 

[0 15] -999. -999. W m-2 

um-1 

sr-1 

radiance_flag Int 16 Radiance flag (0 =radiance not 

used, 1 = radiance used) 

time 

x3 

[0 1] -999 -999 none 



radiance_differen

ce_flag 

Int 16 Radiance difference flag (0 = 

radiance not used, 1 = 

radiance used (first radiance), 

2 = radiance used (second 

radiance), 3 = radiance and 

radiance difference used) 

time 

x3 

[0 3] -999 -999 none 

Z Float 

32 

Radar reflectivity time x 

height 

[1e-4 

1e3] 

-999. -999. mm6 

m-3 

bscat Float 

32 

Lidar attenuated backscatter time x 

height 

[1e-7 1e-

4] 

-999. -999. m-1 sr-

1 

DARMASK_Simplif

ied_Categorizatio

n 

Int 16 DARDAR-categorisation: 

-9 -> ground 

-1 -> don't know 

0 -> Clear 

1 -> ice 

2 -> ice + supercooled 

3 -> liquid warm 

4 -> supercooled 

5 -> rain 

6 -> aerosol 

7 -> maybe insects 

8 -> stratospheric feature 

time x 

height 

[-9 8] -9 -9 none 

instrument_flag Int 16 Instrument flag 

(0==nothing/1==lidar/2==rada

r/3==radar+lidar) 

time x 

height 

[0 3] -9 -9 none 

Z_fwd Float 

32 

Forward-modelled 94-GHz 

radar reflectivity factor 

time x 

height 

[1e-4 

1e3] 

-999. -999. mm6 

m-3 

bscat_fwd Float 

32 

Forward-modelled Lidar 

attenuated backscatter 

time x 

height 

[1e-7 1e-

4] 

-999. -999. m-1 sr-

1 

extinction Float 

32 

Retrieved visible extinction 

coefficient 

time x 

height 

[1e-7 1e-

1] 

-999. -999. m-1 

lidar_ratio Float 

32 

Retrieved extinction-to-

backscatter ratio 

time x 

height 

[0 100] -999. -999. sr 

iwc Float Retrieved Ice Water Content, 

the mass of ice per unit 

time x [1e-9 1e- -999. -999. kg m-3 



32 volume of air height 2] 

effective_radius Float 

32 

Retrieved effective radius, 

proportional to the ratio of ice 

water content to visible 

extinction coefficient 

time x 

height 

[0 1e-4] -999. -999. m 

N0star Float 

32 

Retrieved intercept parameter 

N0* of the normalized size 

distribution of ice particles as 

describe in Delanoë et al. 

(2005) 

time x 

height 

[0 1e14] -999. -999. m-4 

ln_extinction_erro

r 

Float 

32 

1-sigma random error in 

natural logarithm of visible 

extinction coefficient 

time x 

height 

[0 1] -999. -999. ln(m-1) 

ln_lidar_ratio_err

or 

Float 

32 

1-sigma random error in 

natural logarithm of 

extinction-to backscatter ratio 

 

time x 

height 

[0 1] -999. -999. ln(sr1) 

ln_iwc_error Float 

32 

1-sigma random error in 

natural logarithm of IWC 

time x 

height 

[0 1] -999. -999. ln(kg 

m-3) 

ln_effective_radiu

s_error 

Float 

32 

1-sigma random error in 

natural logarithm of effective 

radius 

time x 

height 

[0 1] -999. -999. ln(m-1) 

ln_N0_error Float 

32 

1-sigma random error in 

natural logarithm of 

normalized number 

concentration parameter 

time x 

height 

[0 1] -999. -999. ln(m-4) 

temperature Float 

32 

Temperature from ECMWF time x 

height 

[180 

320] 

-999. -999. K 

day_night_flag Int 16 Day Night Flag for lidar Night 

(1) Day (0) 

time [0 1] -9 -9 none 

land_water_mask Int 16 Land Water Mask from Calipso 

files, indicating the surface 

type at the laser footprint 

0=shallow ocean 1=land  

2=coastlines  

3=shallow inland water 

4=intermittent water 

 5=deep inland water 

time [0 7] -9 -9 none 



6=continental ocean  

7=deep ocean 

  

2.4 REQUIRED INPUT DATA 
The algorithm currently uses “DARDAR categorisation files” produced at ICARE, which contain all the 

required observations and thermodynamic variables, interpolated or averaged on to the same grid. 

Although contained within the same file, here we group the required data into instrument, platform, orbit 

parameters and meteorological data.  

3. ALGORITHM DESCRIPTION 

3.1 Introduction 
This algorithm uses a variational method for retrieving profiles of visible extinction coefficient, ice water 

content and effective radius in ice clouds using the combination of radar reflectivity, lidar attenuated 

backscatter and infrared radiances in the atmospheric water-vapour window. The forward model includes 

effects such as non-Rayleigh scattering by the radar and molecular and multiple scattering by the lidar.  

By rigorous treatment of errors, and a careful choice of state variables and associated a priori estimates, a 

seamless retrieval is possible between regions of the cloud detected by both radar and lidar, and regions 

detected by just one of these two instruments. Thus, when the lidar signal is unavailable (such as due to 

strong attenuation), the retrieval tends towards an empirical relationship using radar reflectivity factor and 

temperature, and when the radar signal is unavailable (such as in optically thin cirrus), accurate retrievals 

are still possible from the combination of lidar and radiometer.  

The algorithm can be used to create two products- “DARDAR-rad-cloud” (using all instruments available), 

and “DARDAR -cloud” (using only the radar and lidar). It draws heavily from the algorithm developed by 

Delanoë and Hogan (2008, 2010). 

3.2 Physics Background  
As explained in detail by Rodgers (2000), variational algorithms (or equivalently those based on “optimal 

estimation theory”), when properly formulated, have the advantage of being capable of finding the best 

solution in a least squares sense given all the information available. In the case of the varcloud algorithm, 

we encapsulate as much physical realism as possible (while still retaining computational efficiency) within 

the forward models for the various instruments. Thus the microphysical assumptions make use of the most 

up-to-date information on ice particle size distributions and habits available from aircraft campaigns. This 

information is stored in the look-up tables described in Table 5. When better aircraft data become 

available, it can be incorporated by recalculating the elements of the look-up table. The algorithm may then 

be run on the new tables without the need to be recompiled. The instrument simulators all use physical 

models of the way radiation interacts with the atmosphere, and in the case of the lidar and infrared 

radiometer forward models, take full account of attenuation and multiple scattering.   

3.3 Algorithm Flow Chart 
The description of the algorithm in the subsequent sections is facilitated by the flow chart shown in Figure 

1, which outlines the key parts in the way the algorithm works.  



 

 

 

 

 

Figure 1: Flowchart showing the sequence of operations performed by the retrieval scheme 



   

 

3.4 Algorithm Definition 

3.4.1 Overview of the variational scheme 

We assume that all instruments have been calibrated, that the nature of the random errors in the 

measurements is known. Profiles are analyzed in turn, and the procedures undertaken for each are 

summarized in Figure 1. The retrieval is then applied to the parts of the profile containing ice cloud. This is 

achieved using the target classification (from DARDAR-MASK file), which identifies pixels containing ice 

and/or liquid. There are two cases when ice clouds are present but the measurements from a particular 

instrument are unreliable: 

 Mixed-phase clouds, typically consist of a layer of liquid water cloud beneath which ice particles are 

falling. In this situation, the lidar has a large return from the liquid droplets, but is then rapidly 

extinguished. Since liquid clouds are not currently represented in the state vector or the lidar 

forward model, in this situation we don’t use the lidar pixels within and below the first pixel 

containing liquid water. Therefore, the ice information within and below the first liquid water layer 

will originate entirely from the radar. It should be noted that we are neglecting the attenuation of 

the radar signal by the liquid water cloud, but for supercooled clouds this is generally small. A 

further possible error to document is that there is some evidence (Hogan et al. 2006a) that when 

supercooled liquid is present, the ice particles tend to grow more by vapour deposition and riming 

than by aggregation, leading to them having a higher density for a given size. This could have an 

impact on the ice water content retrievals, as yet not fully characterized. However, it should be 

noted that in these situations the liquid water is believed to dominate the radiative properties of 

the cloud (Hogan et al. 2003) and so the resulting radiative error may not be too significant. 

Certainly further work is required in this area. 

  When liquid clouds are present at any height in the profile (either warm or supercooled), the  

infrared radiometer observations will contain a contribution from the liquid water that is not 

represented in the forward model, so cannot be used. Therefore in this situation the radar-lidar-

radiometer varcloud algorithm will revert to the behaviour of the radar-lidar varcloud algorithm.  

In a variational scheme, one must decide what variables to use to describe the system being observed. 

These variables will be retrieved and are represented as the state vector, x. In the case of ice clouds, the 

visible extinction coefficient, v, has the advantage that, in the geometric optics limit, it is directly linked to 

the both the lidar measurements and to the optical depth of the cloud. For example, in the single-scattering 

limit and in the absence of molecular scattering, the apparent lidar backscatter at range r from the 

instrument can be expressed as  

 
0

ˆ( ) = ( ) exp 2 ( ) ,
r

v
r r r dr    

    (1) 

where ̂  is “true” lidar backscatter coefficient, assumed proportional to v via the extinction-to-

backscatter ratio, S:  



 ˆ = / .
v

S   (2) 

Hence the second variable to be added to the state vector is S. In practice, (1) is replaced by a formulation 

including molecular and multiple scattering, as described in a next section. S is usually assumed constant in 

radar-lidar algorithms (e.g. [Donovan et al. (2005), Tinel et al. (2005)]). However this strong constraint can 

be relaxed when the number of independent measurements allows it, for instance the infrared radiances 

(Delanoë and Hogan 2010). 

In order to relate v to other moments of the size distribution such as radar reflectivity factor (Z) or ice 

water content (IWC), it needs to be supplemented in the state vector by another intensive or extensive 

variable, such as a measure of particle size or number concentration. This additional variable should ideally 

have two key properties. Firstly, a good a priori estimate of it should be available as a function of 

temperature. This ensures that in regions where only the radar or the lidar is available, the scheme will 

tend towards existing empirical relationships involving temperature, such as the formulae for IWC as a 

function of Z and temperature (e.g. Liu and Illingworth 2000, Hogan et al. 2006a,  Protat et al. 2007).  

It was demonstrated by Hogan et al. (2006a) that the temperature dependence in these relationships must 

arise via the temperature dependence of the number concentration parameter of a size distribution, 

commonly referred to as N0. Secondly, it should be easy to combine this additional variable with v to 

estimate any other property of the size distribution. A good candidate is the ice “normalized number 

concentration parameter”, N0
*. For a full description of the properties of this variable (including to what it is 

normalized), the reader is referred to Delanoë et al. (2005), but for our purposes, the key property that we 

exploit is that for any intensive variable y and extensive variable Y there is a near-unique relationship 

between the ratio v / N0
* and both y and the ratio Y / N0

*. 

Given these requirements, the last variable we add to the state vector is N0
’, defined as  

 * 0.61

0 0
= / .

v
N N   (3) 

In Figure 3, it is shown that this mathematical combination of variables has the useful property of being 

independent of ice water content; unfortunately we do not currently have a good physical reason why this 

is the case. As shown in section 3.4.7.2, this variable is found to have a strong temperature dependence. 

Furthermore, N0
* can easily be derived from the combination of v and N0

’, which then enables any 

intensive or extensive variable to be estimated (see section 3.4.7.2). 

To improve the computational efficiency, we seek to reduce the number of elements in x. Naturally, v is 

only retrieved at the n ranges where ice cloud is detected by either the radar or the lidar. This is achieved 

using the “DARMASK_Simplified_Categorization”, “Target_Radar_Mask” and “Target_Lidar_Mask” variables 

(greater or equal to 1) from DARDAR-MASK file. An additional efficiency is obtained by not retrieving N0
’ 

directly at each gate, but rather representing it by reduced set of m basis functions, Nb, such that smooth 

variation in range is guaranteed. The same approach was used by Hogan (2007) to retrieve an analogous 

variable for polarization radar measurements in rain. Consequently, the state vector for a single profile is  
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Note that we use the logarithm of the entities v, Nb and S, not the entities themselves, to avoid the 

unphysical possibility of retrieving negative values. In section 3.4.4, we describe the S retrieval 

assumptions, however for the sake of convenience we express the state vector with lnS with an index 

varying between 1 and g.  

With the state vector now defined, we turn to the observation vector, y. This contains the measurements Z 

(the radar reflectivity factor),  (the apparent lidar backscatter), I (the  infrared  radiance at wavelength ) 

and I (the difference between two  infrared  radiances). Currently the default is to use the combination 11  

and 12 microns. Radiances measured in the  infrared  atmospheric window provide information on the 

extinction of the cloud within the nearest one or two optical depths, provided that the temperature profile 

is well known. The difference between two infrared radiances provides information on ice particle size 

[Chiriaco et al. (2004), Cooper et al. (2003)]. 

Hence, the observation vector can be written as  
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Note that  and Z have different indices p, and q, since the radar and lidar usually do not sample exactly the 

same part of the cloud. The lidar signal is more sensitive to the concentration of the particles but can be 

extinguished when the cloud becomes too thick (typically when optical depth is greater than 3). The radar 

is more sensitive to the size of the particles and therefore does not always detect very optically thin clouds. 

It is advantageous to include in y any gates beyond the far end of the cloud, this enables any molecular 

return measured here to be used automatically as a constraint on optical depth [Cadet et al.(2005)].  

When liquid is detected within the profile, the lidar signal is not used in the retrieval below this liquid pixel 

even if there is ice, because in this ice-cloud algorithm liquid is not represented in the state vector or the 

forward model, and so it is not possible to correctly interpret the lidar measurements in such a situation. 



Therefore in this situation, the radar alone is used to retrieved ice cloud properties. If measurements are 

missing they are simply excluded from y. As in the state vector, the logarithms of the entities   and Z are 

used because of the large dynamic range that they can span in a single profile. It is also found that the use 

of logarithms in x and y results in much faster convergence to the correct solution. 

The slowest part of the radar-lidar-radiometer retrieval is currently in the forward model for the 

radiometer. Therefore, in practice, the retrieval is performed in two parts: the first in which the I and I 

elements are omitted from y, and a radar-lidar retrieval is iterated until convergence. The retrieved ice 

cloud properties are then used as the first guess for a second part in which the I and I elements are 

reintroduced into y, and the iterations are continued but including forward modelling of the radiance 

quantities. In practice it is found that only a few further iterations are necessary at this point, since the 

radar-lidar combination usually derives a profile very close to the final profile from all three instruments. In 

producing the “DARDAR cloud properties” product, we simply stop the retrieval after the first part and 

report the ice cloud properties retrieved only by the radar-lidar combination. By default, we use the 11 

micron channel for I and the 11 and 12 combination for I, although it is straightforward to change this. 

The reason for using I rather than two radiances I11  and I12 independently is that the forward modelling of 

the radiances is subject to errors in the temperature profile, and both radiances will be affected in the 

same way. This has the effect of introducing an  observational error correlation between these two 

measurements, but unfortunately that is very difficult to characterise and indeed no observational error 

correlations are included in the formulation of the retrieval (i.e. the observational error covariance matrix R 

is diagonal). This problem can be overcome to some extent by taking the difference between two radiances 

I.  

3.4.2 Optimal estimation formulation 

The essence of the technique is to start with a first guess of the state vector and use a forward model 

(represented by the dot-dashed box in Figure 1) to predict each element of the observation vector. This 

prediction is compared to the actual observations (box 10 of Figure 1) and the difference is used to 

calculate a refined state vector that is fed back into the forward model. This process is repeated until 

convergence. The aim is to find the state vector that minimizes the difference between the observations 

and the forward model in a least-squares sense. This is achieved by minimizing a cost function J :  
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 The first five elements on the right hand side of (6) represent the deviation of the observations ln Z, ln , I 

and I, from the values predicted by the forward model ln Z’, ln ’, I' and I’, with the root-mean-squared 

(RMS) observational errors represented by lnZ, ln,, I and I. In practice these include forward-model 

errors as discussed in sections 3.4.6 and 3.4.7.4. 



The last summation in (6) represents the deviation of the elements of the state vector from some a priori 

estimate, xa (referred to as the “background” in data assimilation). This term assists in the stability of the 

algorithm and ensures that if radar or lidar observations are missing then the retrieval will tend towards the 

behavior of existing empirical algorithms in the literature. In most cases, an a priori is only required for N0’ 

(see section 3.4.7.2) and S, not for v  since this variable is well constrained by both radar and lidar. Note 

that although the natural logarithm of several quantities is taken in (6), this should not lead to small 

deviations being weighted incorrectly with respect to large deviations, because each deviation is 

normalized by its error variance, which is rigorously calculated in each case.  

However, it is found to be useful to use for v but with a large error, as this ensures the stability of the 

retrieval in a very small fraction of cases where this is necessary, but without significantly affecting the 

results in the vast majority of cases. A wide range of values of S have been reported in the literature; 

following the evidence of Platt et al. (1987) and Chen et al. (2002) of S  typically varying between 20 sr and 

60 sr, Platt et al. [2002] show that for very cold ice clouds, S can go up to 100 sr. 

Table 3: First guess and a-priori for the state vector 

Variable Description First guess and 

a-priori 

A-priori 

error 

Unit 

ln S Extinction-to-backscatter ratio  As a function of 

temperature 

0.5 ln(sr) 

ln v  Extinction coefficient; an a priori is usually not 

required but is used to stabilize the retrieval in a 

very small fraction of cases, so we set a large error 

to the a priori. 

ln(10-6) 5.0 ln(m-1) 

ln N0’ 

 

The a-priori for this variable is defined as ln(N0’) = 

ln(N0*/extinction0.6) =A +B*T, where temperature T 

is in degree Celsius. 

A =22.234435 

B=-0.0907 

1 ln(m-3.4) 

 

In order to incorporate error correlations and smoothness constraints, it is convenient to rewrite (6) in 

matrix notation:  

 T -1 T -1 T

a a
2J = δy R δy + δx B δx + x Tx  (7) 

 where y=y-H(x), xa=x-xa, H(x) is the forward model operator, and R and B are the error covariance 

matrices of the observations and the a priori, respectively. In this application we assume that R is diagonal, 

i.e. that the errors in the observations are not spatially correlated. By contrast, the off-diagonal 

components of B play an important role in extending information on N0’ in the vertical, as will be described 

in section 3.4.5. 

Unfortunately, the lidar (and to a lesser extent the radar) measurements may be noisy, which can 

contaminate the retrieved v, as shown by Hogan et al. (2006b). Therefore, we add a smoothness 



constraint to the retrieved extinction, represented by the final term in (7), in which T is a “Twomey-Tikhov” 

matrix (Rogers 2000, Ansmann and Muller 2005). This matrix penalizes the second derivative of the lnv 

and lnS profiles, resulting in a smoother profile that is able to closely forward model the lidar backscatter 

without reproducing any of its random measurement noise. T is of size  (n+m+g) × (n+m+g), and for n = 6, 

the top-left n × n  elements of the matrix (i.e. those that correspond to the v elements of x) are given by  

 
1.. ,1..

1 2 1 0 0 0

2 5 4 1 0 0
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T  (8) 

It may not be immediately obvious to the reader where these numbers come from, but they can be derived 

by writing the last term of the cost function in (7) as the sum of the square of the finite-difference form of 

the second derivatives of a column of values in the state vector. So if we have the column vector x=[x1, x2, 

…, xn], then this quantity will be xTTx/=(x1-2x2+x3)
2 + (x2-2x3+x4)

2 + …+ (xn-2-2xn-1+xn)2. By multiplying out all 

the squared terms, it can be shown that the matrix T has the form given by (8). 

Note that if multiple cloud layers are present in the profile then the v element corresponding to the 

lowest level of one cloud layer will be adjacent in the state vector to the element corresponding to the 

highest level of the cloud layer below. The elements of T are therefore set independently for each cloud 

layer, to avoid artificially smoothing between non-adjacent layers. A similar submatrix is used for those 

parts of T that correspond to the lidar-ratio profile. Since the smoothing is only applied to these two 

variables, the other elements of T are set to zero. The coefficient  controls the degree of smoothing and in 

practice needs to be chosen subjectively depending on the magnitude of the random errors in the lidar 

signal and the vertical resolution. We use a value of 100 for lnv. 

The cost function cannot be minimized in one step because of the presence of the non-linear 

forward model operator H(x), so we use the Gauss-Newton method [Rodgers (2000)] in which a linearized 

version of the cost function is minimized iteratively. At iteration k we have an estimate of the state vector, 

xk, and the corresponding forward-model estimate of the observations, H(xk). The linearized cost function JL 

is obtained by replacing H(x) in (7) by H(xk)+H×(x-xk), where H is the Jacobian, a matrix containing the 

partial derivative of each observation with each respect to each element of the state vector. In this case H 

is a (p +q+2) × (n+m+g) matrix given by 
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 (9) 

and is calculated at the same time as the forward model, as will be described in section 3. In order to 

improve the readability of H, we have not displayed the logarithm of the variables , Z, v, Nb and S, or the 

primes on any of the forward-modeled variables. The lower two rows are omitted for producing the 

“DARDAR cloud properties” product.  

By setting the derivative of JL with respect to each element of x to zero and rearranging, an expression for 

the state vector at the minimum of JL is obtained: 

   
 

-1 T -1 -1 a

k + 1 k k k
x = x + A H R δy - B x - x - Tx ,  (10) 

where the symmetric matrix A is known as the Hessian and is given by  

 T -1 -1
A = H R H + B + T.  (11) 

For efficiency A is not inverted but rather kept on the left hand side of (10) and the matrix problem is 

solved by Cholesky decomposition, box 12 in Figure 1. 

Since we are using an iterative process, a first guess is required for the state vector, x0. For those variables 

with an a priori (Nb and S), the a priori value is used, while for v, a constant value of 10-6 m-1 is used. The 

process is repeated until convergence (box 11 in Figure 1), as determined by a χ2 convergence test. χ2 is 

defined as: 
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Or more simply it may be written as 2


T -1
= δy R δy . The iterations are stopped if χ2 is less than 0.01 or 

when its value has converged. Convergence is determined to have occurred when the value of χ2 increases 

from its value at the previous iteration for the third time. The state vector at the iteration with the 

minimum value of χ2 is taken to be the solution. As described earlier, the radar-lidar-radiometer retrieval is 

performed in two parts: first using only the radar and lidar measurements, and then using this as a first 

guess of a few more iterations in which the radiance elements are added to the measurement vector. The 

same convergence criteria are used in each case. 

3.4.3 Use of cubic spline basis functions for smoothing N0’ 

As mentioned previously, N0’ is represented by a reduced set of m basis functions, which ensures a shorter 

computation time as well as achieving a certain degree of smoothness in the retrieved N0’. However the 

forward model described in section 3.4.7 works on the lidar range grid, so at the beginning of each 

iteration, the m amplitudes of the basis functions Nb, within the state vector, have to be converted to n 

values of N0’. We treat this as a transformation from the state vector x to a high-resolution state vector x̂ , 

which is the same as defined in (4) but with the m values of Nb replaced by n values of N0’. This step is 

indicated by box 2 in Figure 1, and is achieved using an (n+m+g)×(2n+g) matrix W: 

 x̂ = W x . (13) 

The top-left (n+g)×(n+g) elements of W correspond to the v and S elements of x that are unchanged by the 

transformation, so are represented in W by an identity matrix. The bottom-right n×m  elements of W 

contain the basis functions. Following Hogan (2007), we use cubic spline basis functions, resulting in the 

retrieved N0’ being continuous in itself and its first and second derivatives. Details of how to set these 

elements of W may be found in the appendix of Hogan (2007). The Jacobian that is output from the 

forward model, Ĥ, is also on the lidar range grid, i.e. it consists of derivatives with respect to N0’ rather the 

corresponding basis function amplitudes Nb. We convert this high resolution Jacobian to the standard 

Jacobian used at the basis function resolution by simply post-multiplying by W: 

 ˆH = H W .  (14) 

  

3.4.4 Retrieving extinction-to-backscatter ratio 

We have 3 different ways to retrieve S: assuming S is constant, or retrieving S varying linearly with 

temperature. Delanoë and Hogan (2008) assumed that S was constant with height, however this strong 

constraint can be relaxed when the number of independent measurements allows it, for instance when an 

independent estimate of αv is available (e.g. from a Raman or high spectral resolution lidar), providing 

information on the height dependence of S. Unfortunately, CALIPSO does not have such channels, but 

when infrared radiances are available we have enough independent information to allow S to vary with 

height in the retrieval. Platt et al. [2002] showed that ln(S) varies linearly with temperature. We assume 

that the altitude dependence can be used instead of temperature if temperature varies linearly with 

altitude. In that case, ln(S) is expressed as a linear function of height: 

ln ln
ln( ) ( )

s mid s
S a z z b   ,            (15) 

 



where z is the altitude and zmid the height of the middle of the cloud. Coefficients, aln S and bln S are, 

respectively, the slope and the value of ln(S) at the middle of the cloud sampled by the lidar, and they can 

be used to represent ln(S) in the state vector instead of ln(S). When no radiances are assimilated (e.g. when 

liquid in the profile prevents the radiance from being forward-modelled using ice properties above), aln S is 

removed from the state vector to revert to the original assumption of Delanoë and Hogan (2008). 

 

3.4.5 Use of a priori error covariances for spreading of number concentration information in 

height 

As described in section 3.4.7.2, an N0’-temperature relationship is used as an a priori constraint on N0’. 

Physically, this can be thought of as expressing the fact that lower down in a cloud (i.e. at warmer 

temperatures), the process of aggregation leads to a smaller number of larger particles. Algorithmically, 

this ensures that the N0’ retrieved by the scheme tends toward a physical value when only one instrument 

is available. In the simplest case, the B matrix is diagonal and the diagonal elements are the error variances 

of the a priori estimate xa, i.e. Bi,i=a
 2 (see Table  for the value used). 

Very often in spaceborne radar-lidar retrievals, within a single profile we have a region of cloud detected by 

both radar and lidar, above which is a region detected by lidar alone and below which is a region detected 

by radar alone. In this case, if B is diagonal, the retrieved N0’ would be determined closely by the radar and 

lidar in the region where both detect the cloud, but within the height span of a single basis function, would 

switch back to a value much closer to the a priori in the regions detected by just one instrument. 

A more realistic retrieval takes account of the fact that, if in the radar-lidar region the retrieved N0’ is higher 

than the a priori estimate, then we would expect it to be higher in the radar-only and lidar-only regions as 

well. This tendency is implemented via the off-diagonal elements of B, which express the fact that the 

difference between the actual value of N0’ and the a priori value is spatially correlated. Following Hogan 

(2007), if we assume that the correlation coefficient between two basis-function coefficients centered at 

heights zi and zj decreases as an inverse exponential with the separation distance, then the off-diagonal 

covariance terms of B are given by  

  , , 0
= exp / ,

i j i i j i
B B z z z   (16) 

 where z0 is the decorrelation distance and it has been assumed that a
 2 is constant with height. 

Table 4: Constants 

Variable Description Value Unit 

z0 decorrelation distance 1 km 

 

Note that an a priori is used for N0’, so (16)  is applied to the N0’ part of B. As yet, there is no observational 

data to choose a particularly value of z0, a problem common to many areas of data assimilation Daley 

(1991).   

 



3.4.6 Calculation of the retrieval error 

After the solution has converged, the error covariance matrix, Sx, of the retrieved variables held in the state 

vector is simply given by the inverse of the Hessian matrix (box 13 Figure 1), i.e. Sx = A-1 [Rodgers (2000)]. 

Hence, the first n diagonal terms of Sx represent the error variances in ln v, with the remainder 

representing error variances in ln S and ln Nb. The error covariance matrix of the high-resolution 

transformation of the state vector x̂  defined in (13) is given by pre- and post-multiplying by the weighting 

function matrix W:   

 ˆ T

x x
S = WS W .  (18) 

The final n diagonal elements of ˆ
x

S  represent the error variances of N0’ at the same resolution as v. 

Errors in any other microphysical variables derived from v and N0’ (in particular IWC and re) may be 

calculated from ˆ
x

S , as described in section 3.4.8 

It should be stressed that the retrieval errors obtained in this way depend strongly on the observational 

errors that are assigned in (6). For the retrieval error to be realistic it is important that the observational 

errors include the error in the forward model. Formally we may write that the observation error covariance 

matrix is given by R=O+M, where O is the error covariance solely due to instrumental error and M is the 

forward model error. Discussion of the error associated with each component of the forward model is given 

in section 3.4.7.4.  

3.4.7 Forward model 

In this section, the forward model H(x) used in the scheme is described. As stated before, the forward 

model produces an estimate of the observations y from the state vector x, and is represented in Figure 1 by 

the dot-dashed box. In addition to the information held within the state vector, ancillary information is 

required for each of the components of the forward model. This includes the thermodynamic state of the 

atmosphere (in particular, profiles of temperature, pressure, humidity and ozone concentration), the 

properties of the surface (skin temperature and emissivity at the radiometer wavelengths), as well as the 

properties of the instruments themselves (in particular the lidar field-of-view to calculate the contribution 

from multiple scattering). Such information can be obtained with adequate accuracy from standard analysis 

and forecast products. 

3.4.7.1 The normalized concentration parameter N0
* and the look-up tables 

Nearly all components of the forward model require the ability to predict arbitrary intensive and extensive 

variables from the combination of v and N0’. This is achieved by first calculating N0* using (3), then using 

one-dimensional look-up tables to relate the ratio v/ N0* to either an intensive variable y, or to Y/ N0*, 

where Y is an extensive variable. In this section it will be shown how these look-up tables are generated. 

First, we need to decide on a microphysical model, describing the shape of the particle size distribution and 

the relationships between particle mass, cross-sectional area and size. The distributions are formulated in 

terms of the maximum particle dimension, D. The ice particle mass is assumed to follow the Brown and 

Francis (1995) density-D relationship when D ≥ 300 micron: 

 1.1
( ) = 0.0056 ,D D

  (19) 



where D is in cm and (D) in g cm-3, which was found by Hogan et al. (2006a), to be accurate when 

calculating Z from aircraft data in mid-latitude ice clouds. The density assumption is encapsulated in the 

relationships in the look-up table, and so can be changed by recreating the look-up tables with a different 

assumption. The corresponding area-size relationship when D ≥ 300 micron: 

 1.64
( ) = 0.15189 ,A D D  (20) 

where D is in cm and A(D) in cm2, is taken from Francis et al. (1998), who used the same aircraft dataset as 

Brown and Francis (1995). When D < 300 micron, we are usung the area-density-diameter relationshiphs of 

Michtell (1996) for Hexagonal columns. Note that density and area are set to those for solid ice spheres for 

small D when the implied density from (19) exceeds that for solid ice (0.92 g cm-3). 

Adopting the formalism of Delanoë et al. (2005), we describe the size distribution as  

 * *

0 0
( ) = ( / ),N D N F D D  (21) 

 where N0* is the normalized number concentration parameter, given by  

 
 
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0 3 4

4
= / ,

4
N M M


 (22) 

and Mn is the nth moment of the ice particle size distribution (the superscripts represent powers of 4 and 5 

in the normal way). Particle size in (21) is normalized by D0*, a measure of the mean size of the distribution 

and defined as  

 *

0 4 3
= / .D M M  (23) 

The function F in (21) is the “unified” size distribution shape given by Delanoë et al. (2005), and has been 

found to fit measured size distributions when they are appropriately normalized (i.e. F fits N / N0* versus D 

/ D0
*). 

To generate the look-up tables, we cycle through a wide range of values of D0
* and for each calculate v / 

N0*, y and Y / N0* (where y and Y represent all intensive and extensive variables of interest). Geometric 

optics is used to calculate v via the area-size relationship discussed above. In the case when Y represents 

radar reflectivity factor Z, Mie theory is applied assuming the particles to be homogeneous ice-air spheres 

of diameter D and mass m. Similarly, the ice water content, IWC, is simply the integrated particle mass 

across the size distribution. The intensive variable effective radius, re, is derived using Foot (1988):  

 
3 IW C

= ,
2

e

v i

r
 

 (24) 

where i is the density of solid ice. Other variables are derived in a similar fashion, as detailed in Table 3  

Table 3: lookup tables 

Variable Derived from Comments Used for 



Variable Derived from Comments Used for 

re v / N0* Effective radius: directly retrieved Cloud parameter 

IWC v / N0* First we retrieve IWC/ N0*, then using N0* we 

derive IWC 

Cloud parameter 

ra v / N0* Mean equivalent-area radius Lidar model 

Z v / N0* We use Mie theory (radar at 94GHz) to derive Z/ 

N0*. First we calculate Z/ N0*, then using N0* we 

derive Z 

Radar model 

 v / N0* We use Mie theory to derive the extinction 

coefficient at 8.55 microns for size distributions 

described in the text, and store the results in the 

form of a look-up table of / N0* versus  v / 

N0*. In the algorithm we then using v / N0* from 

the state vector to calculate / N0*, then using 

N0* we derive . 

Radiative model 

 v / N0* We use Mie theory to derive the extinction at 11 

um. Using v / N0* we calculate / N0*, then 

using N0* we derive  

Radiative model 

 v / N0* We use Mie theory to derive the extinction at 12 

um. Using v / N0* we calculate / N0*, then 

using N0* we derive  

Radiative model 

8.55
w  v / N0* We use Mie theory to derive the single-scatter 

albedo at 8.55 um. In the algorithm we use v / 

N0* to calculate
8.55

w . 

Radiative model 

11
w  v / N0* We use Mie theory to derive the single-scatter 

albedo at 11 um. Using v / N0* we calculate 
11

w . 

Radiative model 

12
w  v / N0* We use Mie theory to derive the single-scatter 

albedo at 12 um. Using v / N0* we calculate 
12

w . 

Radiative model 

g v / N0* We use Mie theory to derive the asymmetry factor 

at 8.55 um. Using v / N0* we calculate g 

Radiative model 



Variable Derived from Comments Used for 

g v / N0* We use Mie theory to derive the asymmetry factor 

at 11 um. Using v / N0* we calculate g 

Radiative model 

g v / N0* We use Mie theory to derive the asymmetry factor 

at 12 um. Using v / N0* we calculate g 

Radiative model 

 

To demonstrate this approach, Figure 2 (a) shows v as a function of 94-GHz Z derived from the same large 

in situ aircraft database used by Delanoë et al. (2005) and Protat et al. (2007). There is clearly no unique 

relationship between the two variables, but Figure 2 shows that when both are normalized by N0*, the 

points collapse on to a much tighter curve. These observations are well fitted by the gray line, which 

indicates the look-up table derived using using the unified size distribution shape discussed above. The 

same behavior is exhibited for all other extensive variables.  

Hence this can be used to predict Z and an other microphysical variables required in the forward model 

from the combination of v and N0* using one-dimensional look-up tables. In principle, any other pair of 

moments could be used to generate the required variables, but if one of them was not N0* then the lookup 

tables would have to be two-dimensional. 

 

Figure 2: (a) Visible extinction coefficient av as a function of 94-GHz radar reflectivity factor Z for the large in situ aircraft 
database of Delanoë  et al. (2005). (b) The same but after dividing both variables by the normalized number concentration 
parameter N0*. The gray line corresponds to the fit calculated using the unified size distribution shape. The curved shape in the 
relationship is due to the transition between Rayleigh scattering at small particle sizes to Mie scattering at larger sizes. 

 



3.4.7.2 A priori of the normalized concentration parameter N0*  

As discussed in section 3.4.1, a desirable property of at least one of the state variables is that we have a 

good a priori estimate of it from temperature (T), in order that when only the radar or the lidar are 

available, the retrieval is at least as accurate as existing empirical relationships based on temperature in the 

literature (e.g. Hogan et al. 2006a). 

Figure (a) shows the temperature dependence of N0* using the same in situ database as used in, Figure 2. It 

can be seen that, although there is such a relationship, it is not IWC independent. For both this reason, and 

in order to reduce the scatter, we divide it by a power of the visible extinction coefficient.  

A range of powers has been tested and it is found that the best results are found for a power of 0.61; Figure 

(b) clearly shows that there is an IWC-independent relationship between N0*/v
0.61 and temperature. 

Hereafter this ratio will be represented by N0’. Because a good a priori is available for N0’, it is used in the 

state vector rather than N0*, but N0* needs to still be calculated as the first step in the forward model (box 

2 in Figure 1) before all the other variables can be calculated. The spread of the points in Fig. 3b indicates 

that ln N0’ has a variance of 1.0 (Table ), so this is the value used for the a priori error variance Bi,j discussed 

in section 3.3.5. 

 

Figure 3: (a) The temperature dependence of N0* for each size distribution within the large in situ database of Delanoë  et al. 

(2005) (dots), superimposed by the mean N0* in 5 C temperature ranges and various ranges of ice water content IWC (lines and 

symbols). (b) The same but for the variable N0’ = N0*/v
0.61

 

 

 



3.4.7.3 Radar forward model 

The look-up tables calculated in section 3.4.7.1 are used in the forward model to derive Z from v and N0*, 

using the relationship between Z / N0* and v / N0* shown in Fig. 2, and represented by box 3 in Figure 1. 

Gaseous attenuation at the radar wavelength is calculated using the look-up tables generated from the 

line-by-line model of Liebe (1985), coupled to estimated profiles of temperature, pressure and humidity as 

part of the ancillary data if it has not been already done in the merged file. Note that Liebe (1985) may not 

still be state-of-the-art, but it would be straightforward to use an alternative model. Ice attenuation is 

believed to be small enough to be neglected (e.g. Hogan and Illingworth 1999, although they specifically 

considered 79 GHz which is very close to 94 GHz in terms of the extinction due to ice particles). Note that it 

would be straightforward to relax this assumption by including attenuation in the radar forward model. 

The Jacobian of the radar forward model, i.e. the partial derivatives of ln Z at each gate with respect to ln v 

and ln N0’, may be calculated efficiently using the gradient of the relevant look-up tables. 

The second part of the radar forward model is the calculation of the part of the high resolution Jacobian Ĥ 

(mentioned in section 3.4.3) that contains the partial derivatives of ln Z with respect to each element of the 

state vector x. This is represented (for all instruments) by box 9 in Figure 1. The derivative of ln Z at high-

resolution gate i with respect to the logarithm v at gate i, keeping N0* constant, is:  
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The derivative 
* *

0, , 0,
ln ( / ) / ln ( / )

i i v i i
Z N N   is derived directly from the lookup-table by computing the 

slope of the relationship between the logarithms of Z / N0* and v / N0*. If we neglect attenuation in ice 

cloud then Z at gate i does not depend on v at any other gate j, so  
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 The partial derivative with respect to N0’ is derived in a similar fashion  
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 while the off-diagonal terms are again zero:  
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Since the reflectivity factor is totally independent of the lidar extinction-to-backscatter ratio S, the partial 

derivative with respect to S is equal to zero.  

 



3.4.7.4 Forward model error 

As discussed in section 3.4.6, it is important to include the contribution of forward-model error to the 

observation error covariance matrix R. In the case of the radar model, the leading source of error is due to 

the representation of the size distribution by a unique modified gamma shape (see 3.4.7.1 for more 

details). The spread of points in the in situ microphysical data set cannot be represented in the lookup 

tables, which contributes to a root-mean-squared random error in Z. Additional errors are associated with 

the approximation of ice particles by homogeneous ice-air spheres, which is required for Mie theory to be 

applied. This approximation leads us to assume a density-diameter relationship, which is used to calculate 

the ice fraction of the homogeneous ice-air spheres. We consider a random error in Z due to microphysical 

assumptions (particle size distribution and density) of Zmicro= 1 dB. This comes from a combination of the 

spread of points in the x-direction in Fig. 2b (the contribution from uncertainty in the particle size 

distribution), and from the degree of agreement found between aircraft and radar scans by Hogan et al. 

(2006a) (the contribution from uncertainty in the density). Forward lidar model error is mainly due to the 

error in extinction-to-backscatter ratio and multiple scattering effects so we assign an error of 0.3 to ln, 

although it is admitted that this value is somewhat arbitrary and may need to be revised in light of future 

work.  

Table 6: Forward model error values 

Variable Value Unit 

Zerror 1 dB 

lnerror 0.3 none 

 

The error in the forward modelled radiance is little more complicated, since it depends on cloud thickness, 

surface temperature and error in meteorological parameters such as the temperature profile. The infrared 

radiance forward model used here is described in section 3.5.2 (and more detailed in Delanoë and Hogan, 

2008), where each individual radiance calculations employs the “two-stream source function technique”. 

Comparisons with the 16-stream DISORT code demonstrated that for zenith radiances our code is accurate 

to better than 1% (see Delanoë and Hogan 2008), thereby justifying the use of only two streams. However 

this study did not include uncertainties in the input parameters. In the literature, different sources of 

uncertainties have been explored, including the error in modelling infrared radiances I and the radiance 

difference I due to different particle habit assumptions and errors in humidity and ozone profiles. 

However these errors are negligible compared to errors due to other input parameters; skin temperature, 

emissivity and temperature errors.  

Skin temperature and emissivity errors have an effect on observed top-of-atmosphere radiances that is 

dependent on the optical depth of the intervening cloud, and consequently need to be considered 

carefully. Our radiative model uses a two-stream calculation to estimate the upwelling and downwelling 

monochromatic fluxes F± , which are then used as the source function in a radiance calculation for the 

radiance measured by the MSI. Unfortunately, this model is too complicated to rigorously work out the 

radiance error associated with a particular skin temperature error. Therefore, a much simpler model of 



infrared radiative transfer is assumed for the purpose of calculating error propagation, although we stress 

that in the subsequent forward modelling of radiances, the full two-stream model is used. 

For estimating the first-order contributions of the surface and the cloud to the measured radiance, it is 

valid to neglect scattering (which is weak in the infrared) and gaseous absorption (which is weak in the 

window region of the spectrum); therefore,  assuming a single layer of physically thin cloud overlying a 

surface with an emissivity of unity, we may write the radiance measured by MSI as 

 = ( ) / (1 ) ( ) / ,
c c c s

I B T B T


      (29) 

where c is the emissivity of the cloud, B is the Planck function, and Tc and Ts are respectively cloud and 

surface temperatures. Of course, (29) is not accurate enough to use as a complete forward model, but since 

errors only need to be estimated to one significant figure, it is sufficiently accurate to estiamate errors, 

which is our purpose here. For a radiance in the zenith direction, cloud emissivity can be estimated from 

the infrared absorption optical depth ():  

 = 1 exp( )
c 

   . (30) 

Infrared optical depth can be well approximated as the half of visible optical depth and the cloud emissivity 

becomes:  

 = 1 exp( / 2)
c v

   . (31) 

Since the radiances are only introduced into the retrieval after the radar-lidar part of the algorithm has 

been run to convergence, we may use the visible optical depth derived by radar-lidar here. In practice it is 

found that the radar and lidar provide an optical depth that is close to the value using all three instruments, 

and therefore the use of this optical depth does not introduce substantial uncertainty in the calculation of 

the error in I. 

We take the partial derivative of (29) with respect to c, Tc and Ts, and by assuming each error is 

independent may sum the squares of the results to obtain the error variance of the radiance:  
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where Ts is the error in surface temperature, which is assumed 3 K for ECMWF forecasts according to 

Morcrette (2001). Tc is the error in cloud temperature; we use a value of 0.6 K, which was the estimated 

error of ECMWF temperature forecasts by Benedetti (2005). This value does seem rather low, but 

unfortunately the Benedetti (2005) reference is the only one that we have been able to get hold of. 

Certainly it would be straightforward to change the assumption in light of future work and communication 

with ECMWF. An additional consideration is that we require the temperature at a 1-km horizontal scale, 

but the ECMWF value will be the average over a 25-km model gridbox. Note that if this number is increased 

from the current value of 0.6 K, then it means that the infrared radiance will contribute proportionately less 

to the retrieval. Future work ought to include a sensitivity test to investigate the impact of errors in 

temperature in interpretting infrared radiances. If the errors are genuinely large, then including infrared 



radiances in a retrieval will only have the effect of degrading it. The final point to note is that the ECMWF 

temperatures will be provided on a pressure grid, and there will be a small amount of error in interpolation 

due to the model’s pressure error. However, this is believed to be less than the absolute temperature error. 

The gradients of the Planck function are straightforward to calculate at the temperature of the surface and 

the temperature of the cloud (taken to be the cloud-top temperature as detected by the lidar). The random 

error in cloud emissivity, c, could be derived from visible optical depth, but it needs to be remembered 

that we are calculating the error in radiance due to parameters in the forward model that are held constant 

during the subsequent retrieval process. Since the cloud optical depth, and hence the cloud emissivity, will 

be varied in order to better match the observed radiance in the subsequent retrieval, this component of 

the error in (32) is set to zero. 

It is clear that the errors in radiance will be strongly dependent on the visible optical depth retrieved in the 

first part of the algorithm: optically thin clouds will let through a substantial amount of radiation from the 

surface, and therefore the surface temperature error contributes significantly to the error in the radiance 

forward model. For optically thick clouds, c is close to unity, almost all the measured radiation was emitted 

by the cloud, and hence the errors in forward modelling the radiance arise entirely from the error in the 

temperature profile. Errors in I are estimated by combining the errors for the two contributing radiances. 

3.4.8 Computing the retrieval error in ice water content and effective radius 

As outlined in section 3.4.6, Sx contains the error variances and covariances of the retrieved ln v, ln S and 

ln N0’, with ln v and ln N0’ both having n elements. In this section we describe how the errors and error 

covariances in IWC and re may be derived rigorously and in a way that may be easily extended to any other 

extensive or intensive variable. Note that all calculations here are done with the matrices transformed such 

that all variables are held on the high resolution grid of the observations, rather than being in the form of 

basis function coefficients. However, for simplicity the “hats” used in section 3.4.6 have been omitted from 

Sx and x. 

Defining column vector m as:   
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the task is to compute the corresponding error covariance matrix, Sm. As described in section 3.4.7.1, the 

look-up tables can provide any variable in terms of N0* and the ratio v / N0*. It is therefore convenient to 

consider an intermediate column vector u that contains these entities:   
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This may be obtained from x using u = Ux, where the matrix U describes how the elements of x are 

transformed to the elements of u. From (3) we derive *

0 0
ln = ln ' 0.61 ln

v
N N   and 

*

0 0
ln ( / ) = 0.39 ln ln '

v v
N N   . Therefore, for the case of n = 2 and for S represented by a single 

number, the matrix U would be  
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where the column of zeros in the middle corresponds to the central element of x that contains ln S; this is 

not represented in u. Following (18), the error covariance matrix for u is given by T

u x
S = U S U .  The last 

step is to define the matrix M such that we can write T

m u
S = M S M . This matrix is similar to a Jacobian in 

the sense that it contains the partial derivatives of each element of m with respect to each element of u. 

The look-up tables are of the form  * *

0 IW C 0
IW C / = /

v
N f N , or equivalently 
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0 IW C 0
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v
N f N , where fIWC represents the look-up table for IWC. Hence for n = 2 we 

have  
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where the partial derivatives are simply the gradients of the look-up tables. Bringing the preceding analysis 

together, the error covariance of m may be derived directly from the error covariance of the state vector 

using T T T

m x
S = M UW S W U M . 

 



3.4.9 Miscellaneous 

In deep convective clouds observed by spaceborne radar, it has been shown that multiple scattering can be 

important [Battaglia  et al. (2007)]. In such situations, a number of the assumptions made in this retrieval 

scheme would become inappropriate, particularly the use of the Brown and Francis (1995) mass-size 

relationship, which is suitable for low-density aggregates. However, in principle a fast radar multiple 

scattering model, such as the one of Hogan and Battaglia (2007), could be incorporated. At present a fast 

method to calculate the Jacobian is not available for this model.  

Another source of error arises due to the mismatch of the radar and lidar beams. Illingworth et al. (2000) 

investigated this effect, and they estimated an error of 0.1 dB when the lidar samples through the middle of 

the radar footprint, increasing to 0.7 dB for a separation of radar and lidar footprints of 1 km. These values 

correspond to the RMS difference in reflectivity that would be found if the lidar measured the same 

quantity as the radar. Accordingly, we usually consider data to be acceptable when the separation distance 

is less than 1 km, otherwise the alignment cannot be trusted and no retrieval is performed. Fortunately, in 

97% of the time this distance does not exceed 1 km. 

 

3.5 External models  

3.5.1 Lidar multiple-scattering forward model (Hogan 2006) 

To include molecular scattering and multiple scattering, we use the fast multiple-scattering model of Hogan 

(2006), which has been found to be as accurate as the widely-used Eloranta (1998) model when taken to 5th 

order scattering, but is over 3 orders of magnitude faster for a 50-point profile. The model is represented 

by box 6 of Figure 1 and takes as input the lidar ratio S, profiles of v and the “equivalent-area radius” ra, 

i.e. the radius of a sphere with the same cross-sectional area as the mean area of the entire size 

distribution. A look-up table is used to convert v / N0* to ra (box 5 of Figure 1).  

In order to estimate the molecular return, the profile of atmospheric density is required. The model 

produces an estimate of the profile of apparent backscatter as well as the top-left p × n part of the 

Jacobian H in (9) that contains 
,

ln / ln
i v j

   . An alternative faster method to calculate the Jacobian was 

provided by Hogan (2008). Note that 
,

ln / ln
i v j

    is lower-triangular in the sense that i only depends 

on values of v,i earlier in the profile, so values corresponding to j > i are zero. 

We also require the elements of the Jacobian corresponding to the other terms in the state vector. The 

Jacobian with respect to the cloud extinction-to-backscatter ratio S is expressed as ln / ln = 1
i

S   .  

The Jacobian with respect to N0* arises due to the particle-size dependence of multiple scattering. Since 

this is relatively weak, we assume for both channels (Mie and Rayleigh) that  
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due to the fact that in practice  is primarily dependent on v and only weakly dependent on particle size 

and N0*.  



Regarding the partial derivative of  with respect to the visible extinction parameter, the upper diagonal is 

always equal to zero since the lidar signal at ith gate is not affected by the further i+1th gate:  
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The lidar model gives us 
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 as described in Delanoe and Hogan (2008). 

3.5.2 Infrared radiance forward model 

 For each infrared radiometer channel, the radiance forward model takes as input the relevant cloud 

variables from the state vector (profiles of visible extinction coefficient v and N0’) and estimates of other 

variables (profiles of temperature, pressure, humidity, O3 and CO2 concentrations, as well as skin 

temperature and emissivity). It produces an estimate of the radiance measured by the instrument as well 

as the Jacobian with respect to each of the cloud variables from the state vector. 

The scattering and absorption properties of ice are taken from the database of Baran (2003), which 

assumes aggregates. At each radiometer wavelength , the ice particle distributions described in section 

3.4.7.1 have been used to create look-up tables such that from an input profile of v and N0*, profiles can 

be calculated of extinction coefficient , single-scatter albedo w


 and asymmetry factor g. This is 

illustrated by box 7 of Figure 1. 

The forward model was described more fully by Delanoë and Hogan (2008), and therefore, as it is treated 

as an external module, only a brief overview will be provided here. Gaseous absorption is represented 

using the correlated-k-distribution method similar to that described by Fu and Liou (1993); the radiance 

code is essentially run multiple times to represent the variation of absorption coefficient within the 

wavelength band of a particular channel. Line-by-line calculations using the code of Kato et al. (1999) have 

been performed to determine the number of quadrature points required and to produce the necessary 

look-up tables for each satellite channel of interest. The spectral features of different gases within a 

channel are assumed to overlap randomly, i.e. the wavelengths of the peaks and troughs in the absorption 

spectrum of one gas are uncorrelated to the wavelengths of the peaks and troughs for the other gases. For 

example, for the MODIS channel 29 at 8.55 m, numerical integration over the spectral region requires 9 

quadrature points for the H2O absorption spectrum and 2 quadrature points for the O3 spectrum, resulting 

in 18 independent radiative transfer calculations. The cloud properties are kept constant in each 

calculation. The final radiance and Jacobian are computed as a weighted average of the radiances and 

Jacobians from each individual calculation, using Gaussian Quadrature. 

The individual radiance calculations employ the “two-stream source function technique” of Toon et al. 

(1989), which is very fast but still represents scattering with sufficient accuracy to be used in the infrared 

when clouds are present. This is illustrated by box 8 in Figure 1. The method used here is described in 

Delanoe and Hogan (2008). The radiance model takes as inputs the variables  8.55
w ,

11
w ,

12
w , 

g gand g (although in practice only two wavelengths are used, by default 11 and 12 m) deduced 

from visible extinction and N0*. The model computes the infrared radiances at 8.55, 11 and 12 nm and for 

the Jacobian dI/dv and dI/dN0
*. 



Monochromatic calculations with the infrared radiance forward model have been validated against DISORT 

(reported by Delanoe and Hogan 2008), verifying that the “two-stream source function” approach is 

appropriate.  
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