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CLARA-AI: CMSAF cLouds, Albedo
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ellite retrievals with GCM simulations, a satellite cloud product dataset simulator was devel-
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Integrated cloud optical
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What causes model cloud fraction reduction after running simulator?
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Simulated cloud fraction, and all other cloud properties, are then derived by averaging the distribution of cloudy pixels thin, high clouds in the
determined by the subcolumn cloud distribution. The minimum detectable (relative to background) radiation signal from clouds tropics. B e
from passive sensors needs to be taken into account by the simulator. For AVHRR this limit is 0.35 (Karlsson and Johansson, oo
2013). Thus, all cloudy subcolumns with integrated optical depth < 0.35 are essentially clear-sky (d). Resulting simulated cloud
fraction for this gridbox is 70%, down from 93% for EC-Earth gridbox cloud fraction!
Additional comparisons of CLARA-A| observations vs. EC-Earth simulations
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biased by multi-layered clouds.

EC-Earth - too many optically thin
clouds partly masking signal!
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