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MW: Principle of retrieval

AT, 23.8 GHz [K]

Use 2 channels and
polarization difference
to estimate WVP, LWP

Also affected by rain
water

Separation of RWP/
LWP critical.
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MW: Principle of retrieval

AT, 23.8 GHz [K]

Use 2 channels and
polarization difference
to estimate WVP, LWP

Also affected by rain
water, wind, cloud
temperature

Separation of RWP/
LWP critical.




MW Cloud liquid water path climatology

Based on Wentz SSM/I since 1987, AMSR-E, and TMI
Monthly diurnal mean liquid water path

Climatological diurnal cycle

O’ Dell, Wentz, and Bennartz, J Climate, 2008

Various limitations for high LWP (due to presence of rain),
slight biases for low LWP
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MW cloud liquid water path climatology

Based on Wentz SSM/I since 1987, AMSR-E,
and TMI

Monthly diurnal mean liquid water path
Climatological diurnal cycle

O’ Dell, Wentz, and Bennartz, J Climate, 2008
Ongoing NASA Measures project (2013-2018)




The diurnal cycle of LWP

Relative Amplitude Diurnal Cycle LWP
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Long-term satellite studies of LWP must account for

the diurnal cycle. Otherwise, satellite drifts will lead to
an aliasing of the diurnal cycle onto trends of LWP.




Separation of rain from cloud water

TWP [kg/m?)
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L|qU|d water path, observations versus IPCC AR-5 (CMIP-5)
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Nakajima-King retrieval
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Effective Radius Collection 6 — Collection 5

July 2008 Collection 6 (2.1 - 3.7 mu reff)
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Radiance
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Horizontal photon transport
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Effective Radius Collection 6 — Collection 5

July 2008 Collection 6 - Collection 5 (C5 and C6 valid)
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Cloud fraction Collection 6 — Collection 5

July 2008 Collection 6 - Collection 5 (C5 and C6 valid)
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Absorbing aerosol above cloud

Effects of Changing Soot AOD Above Cloud on Reflectances
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Aggregation/Error propagation

1. What is the best estimate for the mean state of a variable
X7?

2. Given the uncertainty of the individual observations
(described by S) and the temporal and spatial variability
of the observed variable, what is the uncertainty
associated with our estimate of x?

3. What is the true variance of x in time and space, i.e., what
would be the variability of the observed variable, if the
observing system was error-free?




Aggregation/Error propagation

Mean Values

Uncorrelated
—— Correlated c= 0.90

—




Aggregation/Error propagation

Variance

Uncorrelated (6°<1p)

—— Correlated c= 0.90 (6°<p)
Variance of daily means from uncorrelated obs.
Variance of daily means from correlated obs.




Aggregation/Error propagation

» Correlated L2-errors will reduce variability around the
estimate of the mean value compared to uncorrelated
errors of the same magnitude.

» However, the estimate of the mean value can be further
apart from the true mean.

> If correlated errors occur only within a ‘day’ and errors
between different ‘days’ are uncorrelated, the day-to
-day variability will be higher in the correlated dataset.




Aggregation/Error propagation
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Aggregation/Error propagation
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lce water path

Models
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Climate datasets

Legacy: If we want to observe climate, we need to have long
-term records. Polar orbiting imagers and passive microwave
conical scanners most important.

Transparency: We need to keep track of what is being done in
each processing step. From calibration to level 3 gridding.

Dynamics: Move away from static datasets. Need to be able to
re-process entire time-series.

Uncertainty estimates: Need to better convey uncertainty
estimates




