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A plea

Don’t worry too much about “modelers”	



Over-emphasizing “evaluation of climate models” 	



	

 diminishes the many utilities satellite observations have	



	

 diminishes what we learn by disagreeing



There are as many needs as users

Weather models require observations for 	



	

 assimilation 
	

 verification	



Climate models mostly use observations for verification	



In both cases 	



	

 observations may be required across timescales 	



	

 models must “down-scale” to pixel scale, then aggregate up, 	


	

 implying utility for many approaches to aggregation 	



Let’s begin with climate models…



the small-scale part, and show that both phenomena progressively dry
the boundary layer as climate warms.

The small-scale component of mixing
Lower-tropospheric mixing parametrized within a GCM grid cell
cannot be directly diagnosed from model output (although it contri-
butes to the convective terms in the water vapour budget; see below).
We assert, however, that an atmosphere’s propensity to generate such
mixing can be gauged by observing the thermal structure just above
the boundary layer in ascending, raining regions. As discussed above,
air there is either transported directly from the boundary layer with
minimal precipitation via lower-tropospheric mixing, or indirectly by
ascending in deeper, raining clouds and then descending. The air would
arrive cool and humid in the former case, but warmer and drier in the
latter case owing to the extra condensation, allowing us to evaluate
which pathway dominates by observing mean-state air properties.

To do this we use an index S, proportional to the differencesDT700–850

and DR700–850 of temperature and relative humidity between 700 hPa
and 850 hPa (S taken as a linear combination; see Methods Summary)
averaged within a broad ascending region which roughly coincides
with the region of highest Indo-Pacific ocean temperatures (the Indo-
Pacific Warm Pool; Fig. 1). Of the full set of 48 models used in this
study, those with a less negative DT700–850 in this region consistently
show a more negative DR700–850 there (Fig. 2a), and the variations in
each quantity are quite large. We interpret this as strong evidence that
both quantities are dominated by variations, evidently large, in the
amount of lower-tropospheric mixing in the ascent region, with higher
S indicating stronger mixing.

Small-scale lower-tropospheric mixing of moisture is part of the
overall source of the water vapour that is associated with the para-
metrized convection, Msmall. This quantity is available from nine of
the models (see Methods Summary). It always exhibits strong drying

near the surface. Above about 850 hPa, it can either dry the atmo-
sphere on average or moisten it depending on the model (Extended Data
Fig. 2), reflecting the competition between drying from condensation
and moistening from lower-tropospheric mixing and from evaporat-
ing precipitation falling from higher altitudes.

Although Msmall does not reflect lower-tropospheric mixing alone,
we can test whether lower-tropospheric mixing (as diagnosed from S)
affects how Msmall responds as climate warms. The available data
confirm that, given a 14 K warming, convective drying of the plan-
etary boundary layer increases by 4–17 W m22 (6–30%), compared to
a typical increase of 8% in global or tropical surface evaporation. The
drying increase is highly correlated (r 5 20.79) with S (Fig. 2b). Thus,
convective dehydration of the planetary boundary layer outstrips the
increase in surface evaporation with warming, in all models except
those with the lowest S. Higher-sensitivity models also have higher S
(Fig. 1), suggesting that this process drives a positive feedback on climate.

The large-scale component of mixing
We next turn to the large-scale lower-tropospheric mixing, which we
associate with shallow ascent or flows of air upward through the top of
the boundary layer that diverge horizontally before reaching the
upper troposphere. Although air ascending on large scales over warm
tropical oceans typically passes through nearly the whole troposphere,
over cooler oceans its ascent often wanes with altitude, showing that
this type of mixing indeed occurs in the Earth’s atmosphere (Fig. 3).
The associated mid-level outflows are well documented for the central
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Figure 1 | Multimodel-mean local stratification parameter s. The index S is
the mean of s within the regions outlined in white. Multimodel averages of s are
shown separately for low-sensitivity (ECS , 3.0 uC) (a) and high-sensitivity
(ECS . 3.5 uC) (b) models, among coupled models with known ECS. The white
dots inside the S-averaging region show the locations of radiosonde stations
used to help estimate S observationally. A few coastal regions that are off-scale
appear white.
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Figure 2 | Basis for the index S of small-scale lower-tropospheric mixing
and its relationship to the warming response. a, DT700–850 versus DR700–850,
each averaged over a tropical region of mean ascent (see Fig. 1), from all 48
coupled models. For reference, a saturated-adiabatic value of DT is shown by
dotted line at 27.2 K, and a dry-adiabatic value (not shown) would be about
216 K. Error bars are 2s ranges. b, Change in small-scale moisture source
Msmall below 850 hPa in the tropics upon 14 K ocean warming, versus S
computed from the control run, in eight atmosphere models and one CMIP3
model. Symbol colour indicates modelling centre or centre where atmosphere
model was originally developed and symbol shape indicates model generation.
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Screenshot: ESG





The ESG paradigm doesn’t really fit CREW (among others)

In ESG, each field has unique provenance and is distinct	



Details relevant to observations are difficult to express	



	

 e.g. calibration changes, commonality in sensors/algorithms, …	



ESG may become more observation-friendly over time





On data formats and other boring details

Uniformity of expression 	



	

 paves the way towards wider use	



	

 can obscure relevant distinctions 	



	

 requires investment, clear thinking and coordination	



And anyway the main difficulty isn’t how data is formatted	





Towards a common language

“Direct comparisons” are uninformative 	



	

 Observations have their own personalities	



	

 Model state is very far from observable 	



This has motivated the development of observation proxies 
(“satellite simulators”) 



Mapping model state to synthetic pixels
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Simple observation proxies (“simulators”)

E.g. MODIS simulator uses sub-column inputs of  	



Provides “pixel-level” estimates of
re(l,i)(z), ⌧(l,i)(z) or q(l,i)(z)

(pseudo-retrieval based on near-IR fluxes) re = F�1(F (re(z)))

(no errors, as ISCCP simulator) 

(when > 700 mb, use ISCCP IR)

(can be “undetermined”) 

⌧ =

Z sfc

TOA

�c(z)dz

P =

Z ⌧=1

TOA

P (z)�c(z)dz

pc =

Z �=1

TOA

p(z)�c(z)dz

Aggregates in space and time as MODIS does



“… a data set (GOCCP), that diagnoses cloud properties from 
CALIPSO observations exactly in the same way as in the simulator 
(similar spatial resolution, same criteria used for cloud detection, 
same statistical cloud diagnostics). This ensures that discrepancies 
between model and observations reveal biases in the model’s 
cloudiness rather than differences in the definition of clouds or of 
diagnostics.”	



	

 Chépfer et al., (2010), 10.1029/2009JD012251	





Chépfer et. al (2013), 10.1175/JTECH-D-12-00057.1
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Simulators are meant to account for the personality of each 
observing system (detection thresholds, interpretations, etc.) 	



Some retrieval errors aren’t expressed 	



	

 dependencies are neglected (e.g. geometric dependencies)	



	

 ancillary information is perfect 	



	

 pixels are always fully cloudy	



!
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Error/uncertainty estimation

It would be very useful in general to have error and/or uncertainty 
estimates for aggregated quantities 	



This is really hard	



	

 for well-characterized uncertainties one still needs a statistical 
	

 model for multi-pixel estimates	



	

 much (most?) of the error and uncertainty in passive retrievals 
	

 comes from (systematic, conditional) failures of conceptual  	


	

 models	



Are there alternatives to aggregating single-pixel retrievals?



Boring technical details can have a big impact	



	

 Some homogenization of formats, etc. would ease adoption	



	

 “Some” could become “too much” pretty quickly	



There’s a large, thriving community of people using satellite 
observations to look at climate models	



The errors in models are mostly more blunt than require e.g. 	


four ways of estimating cloud-type height	



New simulators will need to show significant diagnostic skill to be 
widely adopted



A plea

Don’t worry too much about “modelers”	



Over-emphasizing “evaluation of climate models” 	



	

 diminishes the many utilities satellite observations have	



	

 diminishes what we learn by disagreeing


