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Level-2 versus Level-3

In both cases, y is not measured directly, but is determined from n other
quantities x;, x, _x,through a functional relationship f:

y =f(x19 xZ,..., xn)

Y = atmospheric parameter retrieval

Y = atmospheric parameter aggregate
(weather observation)

(climate observation)

f= retrieval/inversion algorithm f= aggregation algorithm

X = top of atmosphere measured spectrum. Number of X = L2 retrieval parameters. Both L2 pixel size and L3

spectral bands/channels determines magnitude of 7 grid size determines magnitude of n

Sources of uncertainty include forward model, a priori,
instrument noise, spectral resolution, inversion
algorithm, etc.

Sources of uncertainty include Level 2 retrieval

uncertainty, aggregation algorithm, scene intepretation,
etc.

Inversion problem ranges from near-linear to non-linear  Aggregation problem range from near-linear to non-

linear

Solution is best estimate of probability distribution; a

Solution is best estimate of probability distribution; a
mean with SD. Both input and output are probabilities

mean with SD. Both input and output are probabilities



UW Space-Time-Gridding (STG) Framework

Modular design allows ease of proce55|ng/experlmentatlon and transparency of data flow
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UW Space-Time-Gridding (STG) Framework

e.g., time, view
angle, phase,
correlation with
other parameters...

Grid size is
user defined

Filter input values based on a
research-specific rule set

v
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Aggregate into nearest
neighbor clusters as defined
by equal-angle grid
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Evaluate pdf:
subset, classify, normalize, threshold
tests, etc.
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Descriptive statistics of
distribution function (mean,

g mode, standard deviation...)

v

Stack daily grids together into

. monthly/seasonal/yearly composites

v

\.

Analysis of long-term global
patterns and trends specific
to research question

L Level 11

Level2:

INPUT R
Auxiliary 1

AnciHary:
___________________ i
Level 31

3-D (lat x lon x #retr) I
Spatial histogram of I
parameter I

|

|

|

2-D (lat x lon) I
Daily statistics I
describing probability I
|

|

|

2-D (lat x lon) :
Time-aggregated stats .
/ Time-series analysis I
|

Smith et al. 2013, JAMC, 52: 255-268



Aggregation as a global co-location scheme

A study in Brightness Temperature (BT): comparing Imagers (VIIRS) and Sounders (CrlS)

STG method O Sounder FOV

Grid cell
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e Convolve Sounder BT to Imager BT
* Aggregate Sounder BT (avg + stdev)
* Aggregate Imager BT (avg + stdev)
* Select uniform scenes:

(1) Sounder stdev < threshold 1

(2) Imager stdev < threshold 2

Traditional pixel-by-pixel colocation method

* Convolve Sounder BT to Imager BT
* Colocate Imager BT to sounder FOV (avg + stdev)
* Select uniform scenes:

(1) Imager stdev < threshold 2

Bias = Average difference of uniform scenes
Error = Standard deviation of difference of uniform scenes




Aggregation as a global co-location scheme

Convolved CrIS BT @ 10 8 um 1 degree SD VIIRS BT @ 10 8 um 1 degree SD

10
BT [K] BT IK]
For umform scenes: V||RS SD minus CrIS SD Global average of uniform-scene-differences
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For global/zonal statistics, if aggregation is done correctly, co-location error is minimal



Applications




Propagation of L2 uncertainty

= Daytime only (solar zenith angle)

Instrument: = Water clouds (cloud phase retrieval)
MODIS = Retrieval Quality/Uncertainty flags
a v A
1-degree equal-angle grid
Retrieval Algorithm: ) v ’
Coll.5 (C5) & Coll.6 (C6) Sample size threshold
Pa rameter: Arithmetic mean + SD
Cloud Effective Radius v
[ Monthly stats: September 2012 ]
[km] v

Can the propagation of uncertainty be

measured (L2 to L3)? Can uncertainty in L3
L be reduced by applying appropriate L2 ﬁlters?)




Propagation of L2 uncertainty

Standard deviation (SD) of retrievals on 1-degree grid

m : :
Input = high uncertainty L2 retrievals a Does L2 uncertainty affect L3 uncertainty?

L]

9 . . .
. High uncertainty L2 = using all
17 retrievals irrespective of value in
16 retrieval uncertainty flag
15
14 . :
5 Low uncertainty L2 = using only those
2 retrievals with < 10% in uncertainty flag
1
(160 120 -80 -40 04080 120160 0 L2 uncertainty is a retrieval by-product
m
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Propagation of L2 uncertainty

Daily average of retrievals on 1-degree grid

-160° -120° -80 -40 0 40 80 120" 160 -5
Random difference

-160° -120° -80° -40° 0 40" 80 1200 160 -5
Systematic difference: MODIS C5 detects higher particle size over ocean

How does L2 uncertainty affect product
comparisons?

L3 Difference = C5 minus C6

High uncertainty L2 = using all retrievals
irrespective of retrieval quality

Low uncertainty L2 = using only those retrievals
with < 10% uncertainty

L2 uncertainty is a retrieval by-product
L3 uncertainty is measured as the SD of gridded

probability distribution (sample of retrievals per
grid cell)

- L2 filtering strongly affects differences
among data products

- Using only low uncertainty L2 retrievals in L3,
highlights systematic differences between two
retrieval algorithms




Characterizing uncertainty: random vs. systematic

= Daytime only (solar zenith angle)

Instrument: = Near-nadir (sensor zenith angle)
MODIS = Retrieval Quality flags
. Z
[ 1-degree equal-angle grid ]
Retrieval Algorithm: v
C5 & C6 Sample size threshold
Classify into ordinal classes: low/mid/high
v
Parameter: Arithmetic mean + SD
Cloud Top Pressure \R
(CTP, [hPa]) | Monthly stats: September 2012
v
Difference: Can aggregation be used to identify
. systematic differences in L2 products?
C5 minus C . .
> us €6 How much of the observed difference is
\_ random? )




Systematic Differences between two Algorithms

Day Time High clouds < 440 hPa Night Time
MODIS C5 minus C6 avg difference Aug 2012 - Daytime high clouds (9.63 hPa) [hPa]  MODIS G5 minus C6 avg difference Aug 2012 - Night time high clouds (13.34 hPa)
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Day Time Low clouds > 680 hPa Night Time
MODIS C5 minus C6 avg difference Aug 2012 - Daytime low clouds (-13.44 hPa) [hPa]  opis ¢5 minus C6 avg difference Aug 2012 - Night time low clouds (-20.61 hPa)
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C6 has lower marine stratocumulus clouds, day and night




40 |
60" |-
80°

Systematic Differences between two Algorithms

High clouds < 440 hPa .
Summer - Average g Winter - Average
MODIS C5 minus C6 avg difference Aug 2012 - Daytime high clouds (9.63 hPa) [hPa] MODIS C5 minus C6 avg difference Nov 2012 - Daytime high clouds (12.45 hPa)
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C6 frequency of high clouds higher in Tropics and lower over Southern Ocean; Generally a lower frequency over mid-latitude Land



How much of the observed difference is random?

High clouds < 440 hPa 1-degree Low clouds > 680 hPa
MODIS C5 minus C6 avg difference Aug 2012 - Daytime high clouds (9.63 hPa) [hPa] AODIS C5 minus C6 avg difference Aug 2012 - Daytime low clouds
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Increase grid resolution by an order of magnitude to remove random differences

High clouds < 440 hPa 10-degree Low clouds > 680 hPa
MODIS C5 minus C6 avg difference Aug 2012 - Daytime high clouds (5.62 hPa) [hPa] VIODIS C5 minus C6 avg difference Aug 2012 - Daytime low clouds (-16.67 hPa)
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How seasonal is systematic differences?

High clouds < 440 hPa
Spring (August 2013) C5 CTP monthly mean  symmer (August 2013)

[hPa] MODIS C5 minus C6 avg difference Aug 2012 - Daytime high clouds (5.62 hPa)

MODIS C5 minus C6 avg difference May 2012 - Daytime high clouds (1.95 hPa)
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Autumn (November 2012) Winter (January 2013)

MODIS C5 minus C6 avg difference Nov 2012 - Daytime high clouds (9.76 hPa) [hPa] MODIS C5 minus C6 avg difference Jan 2013 - Daytime high clouds (6.36 hPa)
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Analyzing Systematic Differences

Instrument:

AIRS + IASI + CrlS

Retrieval Algorithm:

UW Dual-Regression

Parameter:

Temperature Profile

[K]

Using model fields
(from GDAS)
as reference

None

v

7

\

10-degree equal-angle grid

S

v

None

v

Arithmetic mean

v

[

Annual average: 2012
5-year trend: 2008 — 2012

\"

-

.

How does systematic differences (due

instrumentation) change with height?

~

to diurnal sampling and

J




5-yr Trend (2008-2012) at 850 hPa (K/yr)

AIRS @ 13:30 LST

AIRS: retrieval T trend at 850 hPa (-0.09 K/yr)
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IASI @ 09:30 LST

IASI: retrieval T trend at 850 hPa (0.07 K/yr)

-160 -120 -80 -40 0 40 80 120 160

IASI: GDAS T trend at 850 hPa (0.22 K/yr)

160 -120 -80 -40 0 40 80 120 160

IASI-AIRS Trend difference is 0.16 K/yr while GDAS Trend difference is 0.07 K/yr
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At 850 hPa half of the observed difference between AIRS & IASI is due to diurnal sampling differences




Analyzing Systematic Differences

50 50 How does diurnal sampling
differences affect product
70 —ARs| 70 ——GDAS-AIRS| comparisons at different heights?
—— IASI —— GDAS-IASI
100 100
Global weighted (by cosine of the
. . latitude) mean along a pressure profile.
o 5
<, <,
2 200 2 200 Isolating two sources of systematic
@ @ differences by comparison with model
a a
300 300 data (as reference)
(1) Diurnal sampling
/ (2) instrument
500 500 {
— Uncertainty due to diurnal sampling
850 850 \ differences affects tropospheric retrievals only
0.2 0 0.2 0.2 0 0.2

T Difference [Kyr] T Difference [Kyr] — Possible implications for evaluating/

analyzing multi-instrument low-cloud
retrievals




Systematic difference caused by instrument alone

300 hPa
AIRS @ 13:30 K CriIS @ 13:30 K
AIRS-GDAS daily difference: -1.05 K : CrIS-GDAS daily difference: 0.08 K ;
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Uncertainty caused by L-3

methods




UW Space-Time-Gridding (STG) Framework

Modular design allows ease of proce55|ng/experlmentatlon and transparency of data flow
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Propagation of L3 Uncertainty: Spatial Scale

MODIS C5: Daily (3 Sep 2012) high CTP difference on different resolution grids

Daily average of high CTP on 2° grid [hPa] How critical is grid-cell size to
' e global/zonal statistics?
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\Z&J ot + %0 T 390 ¥ ¢ 2 Degree
) ; 300 % - T L 10 Degree
- 'jii % .L y 30 ® X T
" . - - L o
PRI m@*m\- %0 2290 l { s
420 'g A T
[}
O 240 T
° T
%
. . . o .. T 190
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Note: a larger spatial scale will affect the rate at which the probability in each cell changes, i.e. a 10-degree (1-degree) cell will require a higher
(lower) degree of change across space before a change in the daily estimate (mean of pdf) is observed



Propagation of L3 Uncertainty: Temporal Scale

AIRS DR: Monthly high CTP difference on 1-degree grid

Feb 2012: difference of two types of monthly means [hPa] How does L3 aggrega.tlon affect
I100 product comparisons?
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40° How much of the L3 product

differences smooth out over time?
(i.e., how much of the L3 product
differences are random?)
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2003-2012: 10-year mean difference of two monthly means hPa]
Imo Type 2 monthly mean = weighted (by

: -75
lar it s I 100 Type 1 monthly mean = monthly
mean of daily means

% cloudiness) monthly mean of daily
means
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|25
|50
I'75 Uncertainty due to systematic effects

100 | becomes evident once temporal scale is
increased




Propagation of L3 Uncertainty: Temporal Scale

AIRS DR Temperature @ 300 hPa difference on 10-degree grid

~ Feb 2012: Type 1 minus Type 2 monthly means

What constitutes a monthly mean?
90’

60° -

Does it matter which combination of

30 days we use?

Ak
.

0

/

Type 1 = monthly mean of 15 even-numbered days

-30° —

| &
S

160 -120 -80 -40

Type 2 = monthly mean of 15 odd-numbered days

Type 3 = monthly mean of first 15 days

Type 4 = monthly mean of last 15 days

A Monthly mean is sensitive to the
combination of daily means.

O = N W Pk~ o

An even distribution of days across a month
(irrespective of exact matching) results in random
differences only. Two different cluster distribution of
days across a month can result in systematic
differences.
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Propagation of L3 Uncertainty: Temporal Scale

AIRS DR Temperature @ 300 hPa difference on 10-degree grid

Feb 2012: Type 1 minus Type 2 monthly uncertainties |k
90

60°
30°

00
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-60°

90 -160° -120 -80 -40 0 40 80 120 160

Feb 2012: Type 3 minus Type 4 monthly uncertainties [k

160 -120 -80 -40 0 40 80 120 160

What causes these observed
differences in monthly means?

How can daily L-3 uncertainties help
clarify differences?

Average monthly uncertainty = Average of daily
SD per grid cell

A high average uncertainty indicates a high
variability in parameter state (due to weather
events). If a time-aggregate sample of daily
averages is not evenly distributed, but
clustered around weather events, L-3
uncertainty can no longer be attributed to
random effects alone.

L-3 uncertainty metrics can help

design aggregation strategies




Multi-source Multi-instrument

Global comparisons




Multi-Instrument Global Comparisons

Sounder (IASI) @ 09:30 (UW DR) Sounder (AIRS) @ 13:30 (UW DR)
IASI high CTP average May 2012 - Daytime [hPa] _ hlgh Pverage May 2012 - Daytlme
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Imager (AVHRR) @ 09:30 (Optimal Estimation) Imager (MODIS) @ 13:30 (CO, slicing)
AVHRR high CTP average May 2012 - day [hPa] MODIS Coll.5 high CTP average May 2012 - Daytime
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STG supports different approaches to production of

aggregated products

% Level 3 ;% Level 3 ;% Level 3 ; % Level 3 ;

= =

Level 2 Level 2 Level 2

Simple products from single sources Composite product with (weighted)
input from multiple sources



SUMMARY and FUTURE WORK

Uncertainty can be traced, characterized, understood and managed. It can be used to help design
aggregation algorithms.

STG is transparent, iterative, fast, independent of instrument and dynamic (allows implementation
of user-defined aggregation strategies).

A modular approach to aggregation facilitates a systematic and traceable investigation into the
behavior of data and geophysical properties over space-time

Aggregation can be used to
— Better understand L2 differences/algorithms/uncertainties

— Make user-specific L3 products with high information content and good uncertainty estimates

Aggregation is not limited to the averaging of L2 pixels. L3 can be higher level information products
that draw on data from multiple parameters/sources)

Continue to characterize sources of uncertainty

Investigate methods for working with multiple observations at different times.

Evaluate cloud parameter differences between Imager-Sounder pairs (MODIS/AIRS, AVHRR/IASI, VIIRS/CrlS).
Develop composite imager-sounder cloud products

Build long-term sounder (HIRS/AIRS/CrIS/1ASI) cloud record

Investigate the effect of ancillary data resolution on L-3 products

Cloud Retrieval Evaluation Workshop-4, Grainau, Germany, 3—7 March 2014



